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ABSTRACT 

In 1994, ASHRAE began developing a guideline for 
ineaswing retrojit savings (GPC- 14P). In support o f  Guide- 
line-14e ASHME initiated RP-1050 to develop a toolkit for. 
calculating linear: change-point linear: and n~ultiple-linear 
inverse building energ3, nzodels. The resulting Inverse Model- 
ing Toolkit (IIMT) can be used aspart ofapr-ocedwe to measure 
savings. This paper describes the nunlerical algoritknts used 
tojndgeneral least squares regression, variable-base degree- 
daj! charzge-point, and combination change-point nzrrltivari- 
able regression models in the IMT, as well as the eqrratlons _ used to estimate the uncertain&ofpredictingenergv use for the 
purpose of nzeasrrring savings using IMT models. 

INTRODUCTION 

Energy conservation retrofits are typically initiated based 
on predictions of how much energy and money a retrofit will 
save. However, predicted savings in early energy conservation 
programs often differed substantially from savings deter- 
mined by measuring energy consumption before and after a 
retrofit (Nadel and Keating 199 1 ; Greely et al. 1990; Jamieson 
and Qualmann 1990). These large discrepancies underscored 
the need to accurately measure energy savings. As the size and 
expense ofenergy conservation programs grew throughout the 
1980s, so did the emphasis on evaluation, which became an 
important part of program management. Measured savings 
were used to verify the success of retrofits, guide the selection 
of future retrofits, and, in some cases, to identify and correct 
operational and maintenance problems (Claridge et al. 1994). 
The importance of measured savings increased further in the 
late 1980s when state regulatory agencies began granting 

shareholder incentives based on measured demand-side 
management (DSM) program results (Fels and Keat~ng 1993). 

In the 1990s. the move toward utility deregulat~on dimin- 
ished the size and number of utility DSM programs. However, 
a new type of retrolit funding mechanism, called performance 
contracting, emerged in which payment for a retrofit is based 
on measured savings. The growing popularity of performance 
contracting created new incentives for developing protocols 
and standards for measuring savings. In response to this need, 
the National Association of Energy Service Contractors devel- 
oped protocols for the measurement of retrofit savings in 
1992. In 1994, the U.S. Department of Energy also initiated an 
effort that resulted in publication of the North American 
Energy Measurement and Verification Protocols (DOE 1996a) 
and, later, the International Performance. Measurement and 
Verification Protocols (DOE 1997,2001). In addition, the U.S. 
Federal Energy Management Program developed their own set 
of Measurement and Verification Guidelines for Federal 
Energy Projects (DOE 1996b). 

In 1994, ASHRAE began developing a guideline for 
measuring retrofit savings (GPC-14P). One method of 
measuring savings is described as follows (Kissock et al. 
1992; Cowan and Schiller 1997). 

1 .  Measure energy use and influential variables during the 
pre-retrofit period. 

2. Develop a regression model of pre-retrofit energy use as 
function of influential variables. 

3. Measure energy use and influential variables during post- 
retrofit period. 

4. Use the values of the Influential variables from the post- 
retrofit period (Step 3) in the pre-retrofit model (Step 2) to 
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predict how much energy the building would have used if it 
had not been retrofitted. 

5.  Subtract measured post-retrofit energy use (Step 3) from 
the predicted pre-retrofit energy use (Step 4) from to esti- 
mate savings. 

In support of this method, ASHRAE initiated research 
project RP- 1050 to develop a toolkit of regression models for 
modeling building energy use. The resulting Inverse Model- 
ing Toolkit (IMT) includes several types of regression models 
designed to model a wide variety of energy use patterns 
(Kissock et al. 2002). These models include variable-base 
degree-day models, change-point models. and multivariable 
regression models. This paper describes the numerical algo- 
rithms used by the IMT regression models. It also describes 
the equations used to estimate the uncertainty of predicting 
energy use for the purpose of measuring savings using IMT 
models. 

LEAST-SQUARES REGRESSION ALGORITHM 

All regression models in the IMT use generalized least- 
squares regression to determine the model coefficients. The 
least-squares regression algorithm used by the IMT begins by 
filling the arrays X and Y, with values of the independent and 
dependent variables, respectively. To provide computational 
stability in cases where the values of the X observations are 
very large or very small, each X observation is then normal- 
ized by the mean value of each independent variable. If the 
mean value of an independent variable is zero, then no normal- 
ization is performed.' 

Generalized least-squares regression estimates model 
coefficients that minimize the sum of the squared error 
between predicted and actual observations. IMT uses a matrix 
algebra approach to least-squares regression (Neter et al. 
1989). In this approach, the matrix of dependent observations, 
Z is equal to the product of the matrix of independent obser- 
vations, X, and the matrix of estimated regression coefficients, 
p, plus an error term, E. 

Solving for P gives 

Equation 2 is solved for the matrix of estimated regression 
coefficients, p, using computational versions of standard 
matrix algebra (Miller 1981). This generalized algorithm 

' It is possible that in the very rare case in which the mean value of 
an independent variable were near zero, while several values of 
the independent variable were very large, this method of normal- 
ization could inflate the large values and cause computational 
instability. However, in the thousands of regressions we have 
performed using this algorithm, we have never observed this situ- 
ation. 

calculates regression coefficients for both single- and multi- 
variate regression equations. 

To calculate the model residuals, the predicted values of =-- 
the dependent variable, ^Y, are computed from 

The matrix of residuals, E, is then computed from 

E = Y - Y .  (4) 

The root mean squared error of the model, RMSE, is a 
measure of the scatter of the data around the model. RMSE is 
computed from 

RMSE = 

where I? is the number of data observations andp is the number 
of regression coefficients. 

The standard error of a regression coefficient is a measure 
of the uncertainty of the estimate of the regression coefficient. 
The matrix ofthe standard errors ofthe regression coefficients, 
S, is computed from 

J- 
S = RMSE (X X) . (6 )  

The squared correlation coefficient, R2, is a number 
between 0 and I that represents the fit ofthe data to the regres- , 

sion model compared to the fit of the data to the mean of the '-' 

data. R2equal to 1.0 indicates a perfect fit between the data and 
the regression model. R2 equal to 0.0 indicates that the regres- 
sion model provides no better fit than the mean of the data. R2 
is computed from 

R~ increases whenever additional regression coefficients 
are added to a model. Adjusted R2 compensates for this effect 
to give a better measure of model fit as additional variables are 
added. The adjusted R2 is computed from 

2 ( n -  ~ ) c ( Y -  b2 Adjusted R = 1  - 
( n - p -  1 ) = ( y - p 2  

VARIABLE-BASE DEGREE-DAY MODELS 

In many single-zone buildings, such as residences and 
small commercial buildings, space-heating energy use 
increases as outdoor air temperature decreases below some 
balance-point temperature. The heating balance-point temper- 
ature is defined as the temperature at which the heat gain from 
internal occupants and equipment balances heat loss through 
the building envelope. At outdoor air temperatures above the . 

L d  
balance-point temperature, no  thermal energy is needed for 
space heating; however, thermal energy may also be required 



Figure 1 Tvpical patterns of tlterntal (la) and electrical 
(Ib) energy use in single-zone buildiizgs when the 
thermal eitemt is used for. space heating and 
other applications and e l ecb i c i~  is z~sed for 
space cooling and other applications. 

for hot water or cooking. Thus, monthly gas or oil consump- 
tion in many single-zone residences forms a pattern such as 
that shown in Figure la. Similarly, cooling energy use 
frequently increases as outdoor air temperature increases 
above some cooling balance-point temperature, below which 
no space cooling is necessary. However, the type of energy 
used for cooling, such as electricity, may also be used for non- 
cooling applications. Thus, monthly electricity bills in single- 
zone buildings in which electricity is used for cooling 
frequently show an energy use pattern similar to that in Figure 
1 b. 

The variable-base degree-day (VBDD) method was 
Y developed to model these types of energy use patterns. During 

the 1980s. Fels (1986) adapted the VBDD method for use in 
measuring savings as the PRInceton Scorekeeping Method 
(PRISM). The algorithm finds the base temperature that gives 
the best statistical fit between energy consumption and the 
number of variable-base degree-days in each energy use 
period. PRISM was one of the first methods to include an esti- 
mate of the standard error for all regression parameters (Gold- 
berg 1982). The method had widespread use, especially in 
evaluation of residential energy conservation programs. 
Subsequently, PRISM was found to provide adequate fits with 
commercial building billing data (Eto 1988; Haberl and Vajda 
1988; Haberl and Komer 1990; Kissock and Fels 1995; 
Sonderegger 1998); however, the physical interpretation of the 
variable-base degree-day method does not apply to commer- 
cial buildings with simultaneous heating and cooling (Rabl et 
al. 1992; Kissock 1993). The FASER (OrnniComp 1984) and 
Metrix Utility (Silicon 2000) data analysis programs have also 
adapted the VBDD method for modeling monthly baseline 
energy use. Both programs use manual search procedures to 
identify the balance-point temperatures. 

The IMT VBDD model uses an automated search 
procedure to identify the balance-point temperature that 
produces the best fit to the data. The fimctional forms of the 
IMT heating and cooling VBDD models are shown below. 

where D l  is the constant term, p2 is the slope term. and 
HDD(P3) and CDD(P3) are the number ofheating and cooling 
degree-days, respectively, in each energy data period calcu- 
lated with base temperature P3. The number of heating and 
cooling degree-days in each energy data period of n days is 

where & is the average daily temperature. 
To calculate VBDD models, IMT fills and returns 

the arrays HDD and CDD with the heating and cooling degree- 
days, respectively, for each energy period according to Equa- 
tions l l and 12. The arrays HDD(i,j) and CDD(i, j) contain the 
number of degree-days in each energy period (i) and for base 
temperatures from 41°F to 80°F G). The best-fit VBDD 
model is identified using a search method by regressing Equa- 
tion 9 or 10 using the HDDs or CDDs in each energy period 
for successive base temperatures, P3, from 4 1 OF to 80°F. The 
base temperature that results in the model with the highest R2 
is recorded. Equation 9 or 10 is then regressed once more using 
the base temperature that results in the model with the highest 
R2, and the results are reported. 

CHANGE-POINT MODELS 

In general, heating and cooling energy consumption in 
multizone buildings tends to vary with ambient temperature 
throughout the entire range of ambient temperatures encoun- 
tered. Thus, the VBDD method, which specifies a constant 
energy usage below or above the balance-point temperature, is 
frequently not appropriate. In addition, linear two-parameter 
regression models fail to capture the nonlinear relationship 
between heating and cooling energy use and ambient temper- 
ature caused by system effects, such as VAV control or latent 
loads (Kissock et al. 1998a). 

Change-point (CP) models, however, succeed at captur- 
ing both effects, and, as a consequence, have had widespread 
use as baseline models for measuring energy savings (Haberl 
et al. 1998; DOE 1997). The IMT includes four basic types of 
change-point models (Figure 2). The type of model is identi- 
fied by the number of regression coefficients P. 

Combination CP-MVR and VBDD-MVR Models 

Change-point (CP) and variable-base degree-day 
(VBDD) models have been shown to provide good fits 
between building energy use and ambient temperature. 
However, other variables also influence building energy use. A 
simple multivariable regression (MVR) model could capture 
the effect of multiple independent variables; however, it could 
not model energy use that varies at ambient temperature 
change points and balance points. Combination CP-MVR and 



Figure 2 1MT change-point models. Top row: 3P cooling 
and heating models. Second m u  from top: 4P 
coolitzg and heating models. Bottom row: 5P 
healing and cooling model. 

VBDD-MVR models retain the ability to model energy use 
with temperature change points and balance points, while 
including the effects of additional independent variables. One 
approach reported in the literature (Rabl and Riahle 1992; 
Ruch et al. 1993; Sonderegger 1997, 1998) is to sequentially 
identify the change-point or base temperature and then use this 
result in an MVR model. An alternative approach is to use 
indicator variables to produce separate CP or VBDD models 
for each operating or occupational mode (Austin 1997; 
Kissock et al. 1992). 

In the IMT, change-point algorithms were extended to 
include multiple independent variables. Using this approach, 
CP-MVR models can be identified in a single step, rather than 
sequentially, and without breaking up the data according to 
operational modes. The IMT can also produce VBDD-MVR 
models by first running the VBDD model and then running the 
MVR model on the VBDD residual file. 

Three-Parameter Models 

The functional forms for best-fit three-parameter change- 
point models for cooling (3PC) and heating (3PH), respec- 
tively, are 

where pl is the constant term, p2 is the slope term, and P3 is the 
change point. The ()+ and ()-notations indicate that the values 

of the parenthetic term shall be set to zero when they are nega- 
tive and positive, respectively. The 3P models are appropriate 
for modeling building energy use that varies linearly with an ..- 

independent variable over part of the range of the independent 
variable and remains constant over the other part. For exam- 
ple, 3PC models, using outside air temperature as the indepen- 
dent variable, are often appropriate for modeling whole 
building electricity use in residences electric air conditioning. 
Similarly, 3PH models, using outside air temperature as the 
independent variable, are often appropriate for modeling heat- 
ing energy use in residences with gas or oil heating. 

IlMT can also find combination three-parameter multi- 
variable regression models (3P-MVR), with up to four inde- 
pendent variables, of the type 

where X1 is typically temperature, and X2. X3, and X4 are 
optional independent variables. 

Four-Parameter Model 

The functional form for best-fit four-parameter (4P) 
change-point model is 

where pl  is the constant term, p, is the left slope, P3 is the right '.v 
slope, and P4 is the change point. LMT can also find combina- 
tion four-parameter multivariable regression models (4P- 
MVR), with up to three independent variables, of the type 

where X I  is typically temperature, and X2 and X3 are optional 
independent variables. 

Four-parameter models using outdoor air temperature 
as the independent variable are appropriate for modeling heat- 
ing and cooling energy use in variable-air-volume systems 
andlor in buildings with high latent loads. In addition, these 
models are sometimes appropriate for describing nonlinear 
heating and cooling consumption associated with hot-deck 
reset schedules and economizer cycles (Kissock 1993). 

Five-Parameter Model 

The functional form for best-fit five-parameter (5P) 
change-point model is (Kissock 1996) 

where P I  is the constant term, P2 is the left slope, P3 is the right 
slope, P4 is the left change point, and p5 is the right change 
point. 

IMT can also find combination five-parameter multivari- - 
able regression models (5P-MVR), with up to two indepen- 
dent variables, of the type 



.-- where X ,  is typically temperature and X2 is an optional inde- 
pendent variable. 

Five-parameter models using outdoor air temperature 
as the independent variable are appropriate for modeling 
energy consumption data that include both heating and cool- 
ing, such as whole-building electricity data from buildings 
with electric heat pumps or both electric chillers and electric 
resistance heating. They are also appropriate for modeling fan 
electricity consumption in variable-air-volume systems. 

ALGORITHMS FOR FINDING 
BEST-FIT CHANGE POINT MODELS 

In the statistical literature, change-point models are 
known as piece-wise linear regression models or spline fits. In 
these models, the data are divided into intervals and line 
segments fit to the data in each interval with the constraint that 
the line segments meet at a common point between each inter- 
val (Hudson 1966). Algorithms for piece-wise linear regres- 
sion have been developed for cases in which the change point 
between linear sections is known in advance (Neter et al. 
1989). When the change-point is not known in advance, it is 
sometimes estimated by inspection (Maidment et al. 1985; 
Schrock and Claridge 1989); however, this method does not 
guarantee a "best fit." 

The literature review identified three algorithms that - may be applicable for finding best-fit change-point models. 
The first algorithm was published by Crawford et al. (1991). 
The procedure begins by dividing the data into iz bins along the 
x-axis. Developing simple linear regression models for each 
bin would result in discontinuities between the linear 
segments. To overcome this problem, the bin widths are varied 
until the lines intersect at the bin boundaries. Because of the 
uncertainty of obtaining convergence, the inability to speciFy 
the number of change points, and the reliance of the final result 
on the initial conditions, this method was not recommended 
for the Inverse Modeling Toolkit. 

The second method was published by Ruch and Clar- 
idge (1 992). This method develops a four-parameter change- 
point model of energy consumption, typically as a function of 
dry-bulb temperature, along with accompanying error diag- 
nostics for the model's parameters. The algorithm finds the 
optimal change point by searching within an interval known to 
contain the change point. The first step is to split the data into 
two temperature regimes, fit ordinary least-squared lines in 
each regime, and calculate the intersection ofthe lines. This is 
repeated for numerous temperature regions. In the second 
stage, the change point is assumed and the model is fit using 
linear regression. From the collection of fits in the two stages, 
the algorithm chooses the one with the lowest RMSE. The reli- 
ability of the parameter estimated is then calculated. The algo- - rithm was coded into a computer program called 4P in the 
early stages of the Texas LoanSTAR program. Unfortunately, 
the method did not prove to be robust when used on actual 

measured energy data. In addition, the prescription of defining 
an acceptable region for the change point (1) required that the 
data be preinspected and (2) created the possibility that the 
true best-fit change point might lie outside of that region. For 
these reasons, this algorithm was not recommended for the 
Inverse Modeling Toolkit. 

The third algorithm uses a two-stage grid search to iden- 
tify the best-fit change point (Kissock et al. 1994). In this 
method, the minimum x value is selected as the initial change 
point in a standard piece-wise linear regression equation. The 
change point is then incremented and the regression is 
repeated across the range of x-values. The change point that 
results in the lowest RMSE is selected as the best-fit change- 
point temperature. This method is then repeated with a finer 
grid centered about the initial best-fit change point. The uncer- 
tainty with which the change-point temperature is known can 
be approximated as the width of the finest grid. The method is 
easily adaptable to three-parameter heating, three-parameter 
cooling, and four-parameter models. A similar algorithm for 
five-parameter models was developed by Kissock (1996). 
Models based on this algorithm have been used extensively 
with building energy data and have proven to be extremely 
robust (Haberl et al. 1998). Because of the simplicity, robust- 
ness, and accuracy of this algorithm, it was selected for use in 
the Inverse Modeling Toolkit. 

IMT uses the same algorithm for finding all change-point 
models, including both single and multivariable change-point 
models. The algorithm is demonstrated for the 3P models in 
the following description. 

The best-fit change-point temperature p3 is identified 
using a two-part grid-search method (Figure 3). The first step 
is to identify minimum and maximum values of XI and to 
divide the interval defined by these values into ten increments 
of width dr. Next, the minimum value ofXl is selected as the 
initial value of p3 and the modcl is regressed against the data 
to find P I ,  P2, and RMSE. The value of P3 is then incremented 
by dr and the regression is repeated until P3 has traversed the 
entire range of possible X values. The value of P3 that results 
in the lowest RMSE is selected as the initial best-fit change- 
point. This method is then repeated using a finer grid of width 
2 dx, centered about the initial best-fit value of P3. The uncer- 
tainty with which the final change-point temperature is known 
is reported as twice the width of the finest grid since, as a result 
of the search method, the change-point temperature that 
produced the best fit lies within this i n t e r ~ a l . ~  

The algorithms for finding change-point and change- 
point multivariable regression models are identical, the only 
difference being that the regression model is in the form of 
Equations 15, 16, 18, or 20 instead of Equations 13, 14, 17, or 
19. 

2, The uncertainty of savings, described in the next section, depends 
on the overall fit of the model with the data as quantified by the 
model's RMSE. It is not an explicit function of the uncertainty of 
the individual regression parameters or the change-point temper- 
ature. 



Figure 3 Flow diagram of algorithm forjnding the best-fit 
change-point model. 

When regressing change-point models, the parenthetic 
+ and -terms are computed with the use of an indicator vari- 
able, I. For example, in Equation 13, the regression equation 
passed to the regression subroutine is 

where x represents (XI - P,)'. The numerical value of x is 
computed as 

x =I  (XI - p,) where I = 0 when XI I p, 
a n d / =  1 whenX,>p , .  (22) 

UNCERTAINTY OF SAVINGS 

Goldberg (1982) estimated the uncertainty of VBDD 
parameters in the PRISM method. Cowan and Schiller (1 997), 
among others, discuss the uncertainty of the estimated savings 
in terms of the money, time, and equipment required to reduce 
the uncertainty. Kissock et al. (1993) and Katapamula et al. 
(1995) investigate how the length and timing and data time 

periods of baseline periods affect the prediction accuracy of 
the baseline regression models. Kissock et al. (1998b) discuss 
the error in retrofit savings calculations due to varying indoor .-. 
air temperature or internal gains. A complicated algorithm for 
estimating error associated with linear models was proposed 
by Ruch et al. (1999). The algorithm was translated into a 
computer code by Ruch and Kissock and tested in develop- 
ment versions of EModel (Kissock et al. 1994). Unfortunately, 
the uncertainty routines were sometimes unstable. 

A simplified method ofestimating the uncertainty asso- 
ciated has been described by Reddy et al. ( 1998) and Kissock 
et al. (1998a). In this method, the energy savings, Sav,, and the 
associated uncertainty, esi. for any data time interval i in the 
post-retrofit period can be written as 

where 1;. is the energy consumption predicted by a pre-retrofit 
model, Ymi is the measured energy consumption during the 
post-retrofit period, and E is the random error associated with 
each parameJer. The uncertainty of a predicted value of 
energy use, Yi , is (Neter et al. 1989) 

where the t-statistic, /(I-al2, n-p), is a function ofthe level of 
significance, a ,  the number of days in the pre-retrofit period, 
n, and the number of parameters in the model, p. The level of 
significance, a, indicates the fraction of predictions that are 
likely to fall outside of the prediction uncertainty bands. In 
practice, the value of the t-statistic is close to 1.96 for a reason- 
able number of pre-retrofit data points and a 5% significance 
(95% confidence) level. In addition, the value of the paren- 
thetic term is usually very close to unity. Thus, can be 
closely approximated as 

1.96 RMSE (I+ 21n)"~. (25) 

Assuming that the prediction and measurement errors are 
independent, the uncertainty of a value of savings, E,~ ,  is 

The uncertainty associated with the total savings over m 
periods in the post-retrofit period is the root sum of squares of 
the uncertainty associated with each daily value of savings. 

When %i and E,,,~ are constants, Equation 27 reduces to 
u 

E,, = &,/J;;; . (28) 



SUMMARY AND CONCLUSIONS 

L. 
This paper describes numerical algorithms used by the 

ASHRAE inverse modeling toolkit to derive regression 
models of building energy use. These algorithms include the 
generalized least-squares algorithm; the algorithms for calcu- 
lating goodness-of-fit parameters; the algorithms for finding 
the best-fit variable-base heating and cooling degree-day 
models; the algorithms for finding the best-fit three, four, and 
five-parameter change-point models; the algorithms for find- 
ing the best-fit combination change-point multivariable- 
regression models; and the algorithms for finding the uncer- 
tainty of model predictions and savings. 

The change-point model algorithms use a two-stage 
grid search to identify the best-fit change point(s). The grid 
search method has proven to be simple to program, robust, and 
able to handle the problem of multiple local maximums. 
Perhaps the greatest potential drawback associated with grid- 
search optimization methods is increased computational time. 
However, due to the efficiency of the matrix algebra least- 
squares algorithm and the computational speed of modem 
computers, the time required to identify change-point models, 
even with up to 9,000 observations, is acceptably short. 

ACKNOWLEDGMENTS 

This work was sponsored by ASHRAE research project 
RP-1050 under the guidance of Technical Committee 4.7, 
Energy Calculations. Atch Sreshthaputra, John Oh, Yoon - Jong, Kazim Yadullahi, and Chris Schmidt provided assis- 
tance with the coding, testing, and deployment of the LMT 
software. Numerous data sets for testing the software were 
provided by the Texas LoanSTAR Program. Many ofthe algo- 
rithms in the IMT were adapted from the EModel software 
developed with hnding from the Texas State Energy Conser- 
vation Office. The ASHRAE RP- 1050 project monitoring 
subcommittee of Jan F. Kreider (Chair), Moncef Krarti, 
Robert Sonderegger, and Agami Reddy provided valuable 
guidance throughout the project. 

NOMENCLATURE 

a = level of significance, fraction of predictions 
likely to fall outside prediction uncertainty 
bands 

P = matrix of estimated regression coefficients 
CDD(P3) = number of cooling degree-days calculated with 

base temperature & 
CP = change-point model 
CV-RMSE = coefficient ofvariation ofroot mean square error 
dr = width of search grid 
E = matrix of residuals 

&pd 
= uncertainty associated with predicting energy 

use 
w HDD(&) = number of heating degree-days calculated with 

base temperature P3 
I = indicator variable (0 or 1) 

m = number of periods in the post-retrofit period 

MVR = multiple variable regression model 

iz = number of data observations 

P = number of regression coefficients 
P = number of regression coefficients 

R~ = squared correlation coefficient 

RMSE = root mean square error 

S = matrix of the standard errors of the regression 
coefficients 

T = air temperature 

4 )  = t-statistic 
VBDD = variable-base degree day model 

X = array of independent variables 

Y = array of dependent variables 

Y = array of predicted values of the dependent 
variable 
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